Suche auf www.groupfleet-news.com

Hinweis

Externer Link: Wenn Sie auf diesen Link gehen, verlassen Sie die Seiten der Volkswagen AG. Die Volkswagen AG macht sich die durch Links erreichbaren Seiten Dritter nicht zu eigen und ist für deren Inhalte nicht verantwortlich. Es gelten dann gegebenenfalls etwaige Nutzungsbedingungen des Dritten. Volkswagen hat keinen Einfluss darauf, welche Daten auf dieser Seite von Ihnen erhoben, gespeichert oder verarbeitet werden. Nähere Informationen hierzu können Sie gegebenenfalls in der Datenschutzerklärung des Anbieters der externen Webseite finden.

Abbrechen

Interview  |  Klaus Zyciora, Part 1

“The electric car allows us to think more freely than ever before”

Interview with Klaus Zyciora, Head of Volkswagen Group Design

Head of Volkswagen Design

Standing still is an alien concept for car designers at any rate. But what can be done when not just a model change but also an entire paradigm shift is taking place? In the first part of our interview with Klaus Zyciora, who has been responsible for the worldwide design of all ten brands of the Volkswagen Group since April 2020, we talk about the effects of electric mobility on the vehicle design.

Mr Zyciora, not only are some things changing in the world of mobility right now, but basically everything – this was echoed impressively at IAA MOBILITY 2021. The full diversity of modern mobility was on show in Munich. How comfortable do you feel as a car designer in such a scenario?

Very much at home to be honest. I found the new format with the different modes of transport and the open space concept extremely exciting. On the one hand, it made the topic of mobility more accessible, while on the other hand this colourful juxtaposition of mobility solutions – from the car though to urban air mobility – encourages free and impartial thinking. It is precisely this thinking that we as car designers need more than ever today. And the good thing is: we can also apply it on a broad basis, for example, thanks to electric mobility.

“The ID.Buzz is a strong and emotional ambassador for electric mobility. You could not fail to love the car.”

Klaus Zyciora

Head of Volkswagen Group Design

To what extent is the switch from combustion engine cars to electric mobility impacting your work as a designer?

The switch to electric mobility is without doubt one of the most significant paradigm shifts that I have experienced thus far in my work as a designer. Just think about it: car shapes have been dictated by the combustion engine in some ways for more than one and a half centuries. After all, it was considered to be the “heart” of the vehicle, occupying up to one third of the entire car and determining various other design elements such as radiator openings, outlets etc. It was the focal point for the different brand looks that evolved and that each of us has essentially internalised. The design-defining role of the combustion engine has now been removed completely from the equation with the dawn of electric mobility. As a result, there are completely new variables that we as designers are now free to fill with new content.

To get a clearer picture, let’s just imagine a Golf 8 next to an ID.3 …

… and admittedly look to see where the revolution is (laughs). On the surface, we have two cars each with four wheels, four doors, a boot lid, a steering wheel, a similar seat configuration and so on. If you look a little more closely, however, you will soon notice: the ID.3 has a much smaller bonnet, significantly shorter overhangs and is a good ten centimetres taller. The proportions have therefore shifted to a decent extent – which customers primarily notice in the vehicle interior: We were able to create lots more space here thanks to the longer wheelbase. The seats have been moved further apart, there is no longer a centre tunnel, the dash panel is a little further away from the occupants – there is simply a greater sense of freedom overall in the car. As a consequence, the vehicle interior of the ID.3 is as large as that of a Passat.

Klaus Bischoff, Head of Volkswagen Design, and Dr. Herbert Diess, Chairman of the Board of Management of the Volkswagen Passenger Cars brand.
Klaus Bischoff, Head of Volkswagen Design, and Dr. Herbert Diess, Chairman of the Board of Management of the Volkswagen Passenger Cars brand.

So a jump in class then as it were …?

Absolutely! And not just in terms of space, but also as regards driving experience. An incredible amount of time and resources were previously invested to design optimally quiet-running engines and ensure optimum insulation. All of that virtually comes for free with electric vehicles thanks to the technology. Driving per se is much quieter and more relaxed, you can make work phone calls, converse effortlessly – and generally feel less stressed on the road. These are all benefits that are finding their way into the field of mobility with the new powertrain technology. Our job is to bring these to fruition for our brands in the interest of our customers – and this gives me so much enjoyment.

Illustration shows near-series concept car.
Vehicle image shows special equipment.
Illustration shows near-series concept car.
Vehicle image shows special equipment.

Speaking of job satisfaction: over your long career with the Volkswagen Group, you have put your designer signature on numerous models. Has there been a personal highlight for you?

That is difficult to say naturally, because I was involved with rather a large number of vehicles; starting with the interior of the Golf IV to the other members of the Golf family through to the current ID. models. But if I have to pick a project right now, I would actually single out the members of the ID. family: so the ID.3, ID.4 – and above all the ID.Buzz, which is set to launch in 2022. At the very least, this will allow us to revive a real car icon. I think you could say with a fair amount of confidence that there is no toy store in the world where you could not get the T1 as a model, construction kit or such like. Creatively, the vehicle acknowledges the roots of the Volkswagen design identity – incidentally like all ID. offshoots – which was once also established with the T1. At the same time, the ID.Buzz is a strong and emotional ambassador for electric mobility. You could not fail to love the car and – as with its ancestor – ideally develop an emotional connection.

Illustration shows near-series concept car.
Vehicle image shows special equipment.
Illustration shows near-series concept car.
Vehicle image shows special equipment.

The T1/ID.Buzz topic is now a prime example of actively lived brand identity. From your perspective as a designer – and not least as head of the global design of all twelve Volkswagen Group brands: Will car brands retain their current high place value in the future also?

I am firmly convinced of this. Brands were and are important anchors in the world in which we live; there is lots of research to prove this. Our needs are naturally changing significantly – whether as private individuals or commercial customers – especially in the area of mobility; at the same time, however, the desire to have these needs fulfilled by certain brands is not fading. The brands have to embrace freedom of thought in this respect but possibly consider other options. As far as the Group is concerned, I think we are quite well positioned in this regard. Take a look at the Audi brand, for example, and specifically the Audi grandsphere concept study. You can clearly see the transformation here. Outwardly: new look, new physiognomy, new proportions, extremely aerodynamic lines. The actual revolution is inside however. The life sphere and spheres of experience of the occupant take centre stage here. And the car has also been crafted around this – and not the other way around. Despite this, the Audi brand essence “Vorsprung durch Technik” remains clearly discernible and tangible; for example, in the automated driving functions.

In the second part of our interview with Klaus Zyciora, read how the gradual establishment of automated driving is impacting the design of cars.

Status: 30.November 2021

 

© Volkswagen AG

CUPRA Terramar VZ 1.5 e-HYBRID 200 kW (272 PS), fuel consumption (weighted, combined): 0.4-0.5 l/100 km; power consumption (weighted, combined): 17.6-19.0 kWh/100 km; fuel consumption (battery discharged): 5.7-6.1 l/100 km; CO₂ emissions (weighted, combined): 10-12 g/km; CO₂ class (weighted, combined): B; CO₂ class (battery discharged): D-E. (Status: 12.2024)
Škoda Elroq, Stromverbrauch kombiniert: 15,2-16,6 kWh/100 km; CO₂-Emissionen kombiniert: 0 g/km; CO₂-Klasse: A.
Audi S6 Sportback e-tron, electricity consumption in kWh/100 km: combined 16.7–15.7; CO₂ emissions in g/km: combined 0; CO₂ class: A. Information on electricity consumption, CO₂ emissions and CO₂ classes given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status: 09.2024)
Audi A6 Avant e-tron performance, electricity consumption in kWh/100 km: combined: 17.0–14.8; CO₂ emissions in g/km: combined 0; CO₂ class: A. Information on electricity consumption, CO₂ emissions and CO₂ classes given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status: 09.2024)
Audi A6 Sportback e-tron performance, electricity consumption in kWh/100 km: combined 15.9–14.0; CO₂ emissions in g/km: combined 0; CO₂ class: A. Information on electricity consumption, CO₂ emissions and CO₂ classes given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status: 09.2024)
CUPRA Formentor VZ 2.0 4Drive 245 kW (333 PS), fuel consumption (combined): 8.7-8.9 l/100 km; CO₂ emissions (combined): 192-201 g/km; CO₂ class (combined): G. Information on consumption, CO₂ emissions and CO₂ classes given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status: 09.2024)
CUPRA Leon VZ 1.5 e-HYBRID 200 kW (272 PS), fuel consumption (weighted, combined) 0,4 l/100 km; power consumption (weighted, combined) 16.5-16.8 kWh/100 km; fuel consumption (battery discharged) 5.4-5.5 l/100 km; CO₂ class (weighted, combined) 9-10 g/km; CO₂ class (weighted, combined): B; CO₂ class (battery discharged): D. Information on consumption, CO₂ emissions and CO₂ classes given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status: 09.2024)
CUPRA Leon Sportstourer VZ 1.5 e-HYBRID 200 kW (272 PS), fuel consumption (weighted, combined) 0.4-0.5 l/100 km; power consumption (weighted, combined) 16.7-17.1 kWh/100 km; fuel consumption (battery discharged) 5,5-5,6 l/100 km; CO₂ class (weighted, combined) 9-11 g/km; CO₂ class (weighted, combined): B; CO₂ class (battery discharged): D. Information on consumption, CO₂ emissions and CO₂ classes given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status: 09.2024)
CUPRA Tavascan Z 4Drive 250 kW (340 PS) 77 kWh, power consumption (combined): 16.5-18.1 kWh/100 km; CO₂ emissions (combined): 0 g/km; CO₂ class: A. Information on consumption, CO₂ emissions and CO₂ classes given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status: 09.2024)
Golf eHybrid, power consumption weighted, combined: 15.7–14.7 kWh/100 km plus 0.4–0.3 l/100 km; fuel consumption battery discharged, combined: 5.3–5.0 l/100 km; CO₂ fuel consumption battery discharged, combined: 9–6 g/km; CO₂ class weighted, combined: B; CO₂ class battery discharged: D–C. Information on consumption, CO₂ emissions and CO₂ classes given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status: 08.2024)
Q6 e-tron, electricity consumption in kWh/100 km: combined 19.6-16.5; CO₂ emission in g/km: combined 0; CO₂ class: A. Information on electricity consumption, CO₂ emissions and CO₂ classes given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status: 06.2024)
Q7, fuel consumption in l/100 km (combined):11,0–7,8; CO₂ emissions in g/km (combined): 251–204; CO₂ class: G. Information on fuel/power consumption and CO₂ emissions given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status 03.2024)
ID.7 Tourer Pro, power consumption in kWh/100 km: combined 16.8-14.5; CO₂ emission in g/km: combined 0. Only consumption and emission values according to WLTP and not according to NEDC are available for the vehicle. Information on fuel/power consumption and CO₂ emissions given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status: 03.2024)
Superb, the official consumption and emission figures will not be available until the type approval process is concluded. (Status: 12.2023)
Enyaq 85 / Enyaq 85x, Enyaq 85: power consumption in kWh/100 km: combined 15.8-14.9; CO₂ emission in g/km: combined 0. Enyaq 85x: power consumption in kWh/100 km: combined 16.8-16.0; CO₂ emission in g/km: combined 0. Only consumption and emission values according to WLTP and not according to NEDC are available for the vehicles. Information on fuel/power consumption and CO₂ emissions given in ranges depends on the equipment selected for the vehicle. Vehicle image shows special equipment. (Status: 12.2023)
Q4 Sportback e-tron, power consumption in kWh/100 km: combined 18,9–15,6 (WLTP); CO₂ emissions in g/km: combined 0. Only consumption and emission values according to WLTP and not according to NEDC are available for the vehicles. Information on fuel/power consumption and CO₂ emissions given in ranges depends on the equipment selected for the vehicle. Vehicle image shows special equipment. (Status: 11.2023)
Audi S6 Limousine TDI, fuel consumption in l/100 km (combined): 7,3–6,9; CO₂ emissions in g/km (combined): 191–182. Consumption and emission values are only available according to WLTP and not according to NEDC for the vehicle. (Status: 10.2023)
Audi S6 Avant TDI, fuel consumption in l/100 km (combined): 7.5–7.1; CO₂ emissions in g/km (combined): 196–187. Consumption and emission values are only available according to WLTP and not according to NEDC for the vehicle. (Status: 10.2023)
Audi S7 Sportback TDI, fuel consumption in l/100 km (combined): 7.5–7.1; CO₂ emissions in g/km (combined): 195–186. Consumption and emission values are only available according to WLTP and not according to NEDC for the vehicle. (Status: 10.2023)
Porsche Taycan 4, power consumption in kWh/100 km: combined 24.8–19.6; CO₂ emissions in g/km: combined 0. Only consumption and emission values according to WLTP and not according to NEDC are available for the vehicles. Information on fuel/power consumption and CO₂ emissions given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status:07.2023)
Audi e-tron GT quattro, power consumption in kWh/100 km: combined 21.6–19.6; CO₂ emissions in g/km: combined 0. Only consumption and emission values according to WLTP and not according to NEDC are available for the vehicles. Information on fuel/power consumption and CO₂ emissions given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status:07.2023)
Born 170 kW (231 PS) 77 kWh, power consumption in kWh/100 km: combined 17.5-15.7; CO₂ emissions in g/km: kombiniert 0; electric range (combined): 496-552 km (527-551 km for 5 seater) (WLTP). Only consumption and emission values according to WLTP and not according to NEDC are available for the vehicles. Information on fuel/power consumption and CO₂ emissions given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status:07.2023)
Tavascan, vehicle image shows optional equipment. (Status: 04.2023)
Vehicle no longer available for order, no consumption and emission data are available.
Golf Alltrack, fuel consumption in l/100 km: combined 5.9–5.6; CO₂ emissions in g/km: combined 154-146. Only consumption and emission values according to WLTP and not according to NEDC are available for the vehicles. Information on fuel/power consumption and CO₂ emissions given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status: 03.2023)
Audi R8 Spyder, fuel consumption in l/100 km: combined 13.9–13.4; CO₂ emissions in g/km: combined 316-305. Only consumption and emission values according to WLTP and not according to NEDC are available for the vehicles. Information on fuel/power consumption and CO₂ emissions given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status: 03.2023)
Polo GTI, fuel consumption in l/100 km: combined 7.1–6.8; CO₂ emissions in g/km: combined 161-153. Only consumption and emission values according to WLTP and not according to NEDC are available for the vehicles. Information on fuel/power consumption and CO₂ emissions given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status: 03.2023)
Leon CUPRA 300, no longer available for order. (Status: 03.2023)
Audi e-tron, power consumption in kWh/100 km: combined 24.3–22.0; CO₂ emissions in g/km: combined 0: efficiency class: A+++. Vehicle images show special equipment. (Status: 09.2019)
A6 Avant TFSI e quattro, fuel consumption in l/100 km: combined 1.6–1.3; power consumption in kWh/100 km: combined 21.5–19.8; CO₂ emissions in g/km: combined 37-30. Only consumption and emission values according to WLTP and not according to NEDC are available for the vehicles. Information on fuel/power consumption and CO₂ emissions given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status: 03.2023)
SEAT Leon e-Hybrid, currently not available. (Status: 03.2023)
Arteon eHybrid and Arteon Shhoting Brake eHybrid, Arteon eHybrid: fuel consumption in l/100 km: combined 1.4–1.1; power consumption in kWh/100 km: combined 16.0–14.7; CO₂ emissions in g/km: combined 31-25. Arteon Shooting Brake eHybrid: fuel consumption in l/100 km: combined 1.4–1.2; power consumption in kWh/100 km: combined 16.2–15.0; CO₂ emissions in g/km: combined 32-26. Only consumption and emission values according to WLTP and not according to NEDC are available for the vehicles. Information on fuel/power consumption and CO₂ emissions given in ranges depends on the equipment selected for the vehicles. Vehicle images show special equipment. (Status: 03.2023)
T-Roc R, fuel consumption in l/100 km: combined 9.1–8.6; CO₂ emissions in g/km: combined 205-196. Only consumption and emission values according to WLTP and not according to NEDC are available for the vehicles. Information on fuel/power consumption and CO₂ emissions given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status:03.2023)
ID.4, ID.4 Pure Performance: power consumption in kWh/100 km: combined 17.9–16.7; CO₂ emissions in g/km: combined 0. ID.4 Pro Performance: power consumption in kWh/100 km: combined 18.6–16.4; CO₂ emissions in g/km: combined 0. ID.4 Pro 4MOTION: power consumption in kWh/100 km: combined 19.3–17.1; CO₂ emissions in g/km: combined 0.Only consumption and emission values according to WLTP and not according to NEDC are available for the vehicles. Information on fuel/power consumption and CO₂ emissions given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status: 03.2023)
Enyaq iV and Enyaq Coupé iV, Enyaq iV: power consumption in kWh/100 km: combined 17.1–15.8; CO₂ emissions in g/km: combined 0. Enyaq Coupé iV: power consumption in kWh/100 km: combined 16.9–15.4; CO₂ emissions in g/km: combined 0.Only consumption and emission values according to WLTP and not according to NEDC are available for the vehicles. Information on fuel/power consumption and CO₂ emissions given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status: 03.2023)
Motorsports vehicle, not available as a production model, no consumption and emission data are available.
ID.4 GTX, power consumption in kWh/100 km: combined 19.3–17.2 (WLTP); CO₂ emissions in g/km: combined 0. Only consumption and emission values according to WLTP and not according to NEDC are available for the vehicles. Information on fuel/power consumption and CO₂ emissions given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status: 03.2023)
Amarok PanAmericana, fuel consumption in l/100 km: combined 10.5–10.2; CO₂ emissions in g/km: combined 274-267. Only consumption and emission values according to WLTP and not according to NEDC are available for the vehicles. Information on fuel/power consumption and CO₂ emissions given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status:03.2023)
ID.3, power consumption in kWh/100 km: combined 16.5–15.2; CO₂ emissions in g/km: combined 0. Only consumption and emission values according to WLTP and not according to NEDC are available for the vehicles. Information on fuel/power consumption and CO₂ emissions given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status: 07.2023)
Audi Q8 e-tron, combined power consumption in kWh/100 km: 24.4–20.1(WLTP); CO₂ emissions (combined) in g/km: 0. Only consumption and emission values according to WLTP and not according to NEDC are available for the vehicles. Information on fuel/power consumption and CO₂ emissions given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status: 12.2022)
Superb, official consumption and emission figures are not yet available, as the type approval process has not yet been completed.
ID. Buzz and ID. Buzz Cargo, ID. Buzz Pro: power consumption in kWh/100 km: combined 21.8 - 20.6; CO₂ emissions in g/km: combined 0. ID. Buzz Cargo: power consumption in kWh/100 km: combined 22.3-20.3; CO₂ emissions in g/km: combined 0. Only consumption and emission values according to WLTP and not NEDC are available for the vehicles. Fuel consumption and CO₂ emissions data with ranges depending on the vehicle equipment selected. Vehicle illustrations show optional equipment.
ID.5 Pro and ID.5 Pro Performance, Power consumption in kWh/100 km: combined 18.4-16.1; CO2 emissions in g/km: combined 0. Only consumption and emission values according to WLTP and not NEDC are available for the vehicles. Fuel consumption and CO2 emission data with ranges depending on the equipment selected for the vehicles. Vehicle illustration shows optional equipment.
Image shows concept vehicle/study, the vehicle is not available as a production model, no consumption and emission data are available.
ID.5 Pro, power consumption in kWh/100 km: combined 16.2; CO2 emissions in g/km: 0; efficiency class: A+++.Vehicle image shows optional equipment. (Status: 11.2021)
ID.5 GTX, Power consumption in kWh/100 km: combined 17.1; CO₂ emissions in g/km: 0; efficiency class: A+++. Vehicle image shows special equipment. (Status: 05.2022)
Audi e-tron, power consumption in kWh/100 km: 24.3–22.0 combined; CO2-emission combined in g/km: 0; Efficiency class: A+++. Vehicle image shows optional equipment. (Status: 09.2019)
ID.4 Pro Performance, power consumption in kWh/100 km: 16.0–14.8 combined; CO2-emission combined in g/km: 0; Efficiency class: A+++. Vehicle image shows optional equipment. (Status: 02.2021)
Q5 Sportback, fuel consumption in l/100 km: Combined 7.6-4.7; CO2 emissions in g/km: Combined 182-123; efficiency class: C-A+. Vehicle image shows optional equipment. (Status: 02.2021)
Caddy Cargo, Fuel consumption in l/100 km: Combined 5.8-4.4; CO₂ emissions in g/km: Combined 131-117. Vehicle image shows optional equipment. (Status: 02.2021)
OCTAVIA COMBI SCOUT 1,5 TSI DSG e-TEC 110 kW, fuel consumption in l/100 km: Urban 6.1, extra-urban 4.2, combined 4.9; CO2 emissions in g/km: combined 112; efficiency class: A. Vehicle image shows optional equipment. (Status: 02.2021)
SEAT Leon Sportstourer e-HYBRID, power consumption in kWh/100 km: Combined: 15.5–15.0; electricity consumption/petrol in l/100 km: Combined 1.3–1.2; CO2 emissions in g/km: Combined 29–27; efficiency class: A+. Vehicle image shows optional equipment. (Status: 02.2021)
SEAT Leon e-HYBRID, power consumption in kWh/100 km: Combined 15.4–14.9; fuel consumption/petrol in l/100 km: Combined 1.3–1.2; CO2 emissions in g/km: Combined 29–27; efficiency class: A+. Vehicle image shows optional equipment. (Status: 05.2021)
SEAT Tarraco e-HYBRID, power consumption in kWh/100 km: Combined 14.5; fuel consumption/petrol in l/100 km: Combined 1.8; CO2 emissions in g/km: Combined 41; efficiency class: A+. Vehicle image shows optional equipment. (Status: 05.2021)
Audi Q4 e-tron , power consumption in kWh/100 km: Combined 17.3–15.8 (NEDC); Combined 19.0–17.0 (WLTP); CO₂ emissions in g/km: 0; efficiency class A+. Vehicle image shows optional equipment. (Status: 05.2021)
Octavia RS iV, fuel consumption in l/100 km: combined 1.5; power consumption in kWh/100 km: combined 11.2; CO2 emissions in g/km: combined 33; efficiency class: A+. Vehicle image shows optional equipment.
Octavia Combi RS iV, fuel consumption in l/100 km: combined 1.5; power consumption in kWh/100 km: combined 11.4; CO2 emissions in g/km: combined 34; efficiency class: A+. Vehicle image shows optional equipment. (Status: 05.2021)
OCTAVIA COMBI iV, fuel consumption in l/100 km: combined 1.4; power consumption in kWh/100 km: combined 11.6; CO₂ emissions in g/km: combined 31; efficiency class: A+. Vehicle image shows optional equipment. (Status: 05.2021)
CUPRA Born, power consumption in kWh/100 km: combined 16.0–15.0; CO₂ emissions in g/km: 0; efficiency class: A+. Vehicle image shows optional equipment. (Status: 09.2021)
Q4 Sportback e-tron, power consumption (NEDC) in kWh/100 km: combined1) 17.9–15.6; CO₂ emissions in g/km: combined1) 0; efficiency class: A+. Vehicle images show special equipment. (Status: 09.2021)
ŠKODA ENYAQ iV 80x, Power consumption in kWh/100 km: 16.1 combined; CO2-emission combined in g/km: 0; Efficiency class: A+. Vehicle image shows optional equipment. (Status: 09.2021)
ID.4 GTX, Power consumption in kWh/100 km: 18.2-16.3 combined; CO2-emission combined in g/km: 0; Efficiency class: A+++. Vehicle image shows optional equipment. (Status: 10.2021)
ID.5 GTX, power consumption in kWh/100 km: combined 17.1 – 15.6; CO₂ emissions combined in g/km: 0. Efficiency class: A+++; Vehicle image shows optional equipment.
ID.5 Pro and ID.5 Pro Performance, power consumption in kWh/100 km: combined 15,9 – 14,6; CO₂ emissions combined in g/km: 0; Efficiency class: A+; Vehicle image shows optional equipment. (Status: 06.2022)
CUPRA Formentor 2.0 TDI, fuel consumption in l/100 km: combined 5.1-4.3; CO₂ emissions in g/km: combined 135-113; efficiency class: B-A.Vehicle image shows optional equipment. (Status: 05.2022)
Audi S8 TFSI, fuel consumption in l/100 km: combined 10.8-10.7; CO₂ emissions in g/km: combined 246-245; efficiency class: E.¹⁾ Vehicle image shows optional equipment. (Status: 05.2022)
ID.3 1ST, power consumption in kWh/100 km: combined 15,4 – 13,5; CO₂ emissions combined in g/km: 0; Efficiency class: A+; Vehicle image shows optional equipment. (Status: 09.2021)
ŠKODA ENYAQ iV 80 , electricity consumption in kWh/100 km: Combined 13.6; CO2 emissions in g/km: 0; efficiency class: A+++. Vehicle image shows special equipment. (Status: 02.2022)
Golf GTI, (180 kW / 245 PS) (NEDC) fuel consumption in l/100 km: urban 9.0-8.6 / extra-urban 5.6-5.3 / combined 6.9-6.5; CO₂ emissions in g/km (combined): 157-149; efficiency class: D-C. Vehicle image shows special equipment. (Status: 05.2021)