Suche auf www.groupfleet-news.com

Hinweis

Externer Link: Wenn Sie auf diesen Link gehen, verlassen Sie die Seiten der Volkswagen AG. Die Volkswagen AG macht sich die durch Links erreichbaren Seiten Dritter nicht zu eigen und ist für deren Inhalte nicht verantwortlich. Es gelten dann gegebenenfalls etwaige Nutzungsbedingungen des Dritten. Volkswagen hat keinen Einfluss darauf, welche Daten auf dieser Seite von Ihnen erhoben, gespeichert oder verarbeitet werden. Nähere Informationen hierzu können Sie gegebenenfalls in der Datenschutzerklärung des Anbieters der externen Webseite finden.

Abbrechen
Frau im Auto hinter dem Steuer mit Handy in der Hand.

Fleet Management  |  Traffic psychology

Understanding behavior behind the wheel

New studies explore the things that motivate us behind the wheel and how our behaviour on the road is changing. An insightful look into the dynamics of road traffic today.

After people slip behind the wheel of their cars, they often act in ways that would be completely inappropriate elsewhere in their lives. A study¹ conducted in 2023 by the German Accident Research Organization of Insurers found that drivers in Germany were increasingly inconsiderate and aggressive. Approximately half of respondents stated that they immediately have to let off steam on occasion once something has irritated them. This level was just under half as high in 2016. What’s more, every fifth driver acknowledged using their vehicle’s headlight flasher to “clear” the passing lane ahead of them. This level was also roughly half as high in 2016. Nearly one-third (31 percent) of respondents said they would step on the accelerator pedal when someone tries to pass them.

Reaction vs. aggression: Solving a psychological puzzle

Why do drivers act this way? The German Society of Traffic Psychology² says that road rage is frequently a form of reactive behaviour, something that occurs when drivers are prevented from reaching an important destination. This event frustrates them and causes them to lash out at the object standing in their way, something like a vehicle that is creeping along ahead of them. This feeling of rage is intensified when drivers consider the actions of other drivers as something avoidable. As a result, they view them as a deliberate act of obstruction or even a provocation (something like driving slowly in the autobahn’s passing lane) in comparison with unavoidable impediments (like a slow-moving agricultural vehicle).

 

Hostile (as well as emotional or impulsive) aggression is also frequently triggered by such strong emotions as anger or humiliation, according to the society’s traffic psychologists. Drivers want to take revenge for what they perceive as unfair treatment by other road users. Harming the other driver is the primary goal of hostile aggression. But as emotions calm, drivers may come to (belatedly) regret the way they treated their victim. From a psychological perspective, this form of aggression requires a trigger. The trigger of road rage can frequently result from the interplay of situational circumstances and personality traits. Congested roads, overloaded roads and traffic jams resulting from increased mobility promote compensatory forms of behaviours, things like speeds that are inappropriate for the situation, tailgating and risky passing manoeuvres.

Communication in the car:

The silence behind the wheel

Tom Vanderbilt, a journalist at the New York Times and a bestselling author³, blames deficits in communication for drivers’ reactions. Vanderbilt’s conclusion: “Once we get into the car, we are almost condemned to be silent.” This life of silence awakens the desire in people to verbally react, even if no one can hear them. Vanderbilt describes an experiment in which a car was positioned at a traffic light. The car did not budge when the light turned green. Researchers then observed the vehicles located behind the vehicle. They discovered that drivers of open convertibles waited much longer before they started to blow their horns and blew them much less than the drivers of cars with the top down. It appeared that the drivers in vehicles with the top down felt less vulnerable to attack thanks to their enclosed vehicle. Vanderbilt’s conclusion: “Anonymity increases aggression.”

The power of the perspective:

An experiment made some surprising findings

Researchers at the Interdisciplinary Centre of Traffic and Transport Sciences at the University of Würzburg studied similar phenomena. In a simulator, the traffic psychologists asked the subjects to drive behind a vehicle on the autobahn’s passing lane. The right-hand lane had plenty of spaces that the vehicle in front could use to switch lanes. The subjects were then asked to determine whether the driver ahead of them had a good reason for remaining in the left-hand passing lane or whether the driver should switch lanes and let the subjects pass. The identical situation was then repeated – with the roles reversed. The subjects were now driving the vehicle in front. The interesting finding: Many subjects who had insisted during the first simulation that the driver in front should change lanes remained glued to the passing lane in the second scenario and would not let the driver behind them pass. Researchers then concluded that drivers view events on the road only from their own perspective. They attributed a large amount of road rage to our inability to understand the actions of other users of the road. This finding was confirmed by a study¹ conducted by the German Accident Research Organization of Insurers. This study found that most users of the roads consider road rage to be a major problem. But they frequently fail to see that they themselves play a role in it.

Learning from ants

Are drivers per se egoists who have only their own interests in mind? There is no one-size-fits-all answer to this question. But one thing becomes clear when you compare human behaviour with the strategies employed by the world’s unofficial traffic world champions, ants: Ants do not have any traffic jams, tailgating or road rage. Each day, a highly complex traffic system is created in an ant colony, a community of more than 1 million residents. The secret to their success is cooperation. Ants simply try to do what is best for the entire colony. The progress made by each ant is essential for the well-being of all. No ant considers its time to be more valuable than the time of others.

Can friendly driving methods improve life on the road?

How do cooperative strategies by people – things like giving the right-of-way to another vehicle at an intersection – influence road traffic? This naturally depends on the amount of traffic. If every second driver who had the right-of-way were to let another vehicle use it at a busy intersection, this action would be much less efficient than it would be if every 10th driver gave the right-of-way to several cars. But the frequency of cooperation in real traffic situations has already reached virtually its optimal level. What can be done to enable us to get faster and better to our destinations? We can take some fundamental actions that will facilitate increased traffic efficiency and improve safety. They include:

 

  • Deciding not to change lanes on the autobahn frequently. Frequent lane changes are a practise that produces virtually nothing and can even cause traffic jams.
  • Carefully observe traffic and put yourself in other drivers’ shoes when possible. It will soothe your nerves.
  • Systematically apply the zipper merge principle. Drivers should use all traffic area available to them, create space for other cars and merge rather late than early. Late merging significantly improves traffic flow, something from which everyone profits.

Tips for relaxed driving:

  • Patience and composure: Remain calm even during trying traffic situations. Impatience and rage can result in risky driving behaviour that can disrupt the flow of traffic and increase the stress levels of everyone involved.
  • Drive defensively: Anticipate the actions of other road users. This will enable you to adjust more smoothly to changes in traffic and will reduce abrupt braking or acceleration.
  • Take regular breaks: Pull over often during long trips to prevent yourself from getting tired or stressed out. A short break can improve your concentration and sharpen your ability to react.
  • Adjust to weather and traffic conditions: Drive on the basis of current conditions. Slow down during bad weather or heavy traffic.
  • Be considerate of others: Friendly, thoughtful behaviour like granting the right-of-way to others can help you relax and avoid conflicts on the road.
  • Avoid distractions: Concentrated driving will help you react faster to unexpected events and lower your accident risk.

¹ German Insurance Association (Gesamtverband der Deutschen Versicherungswirtschaft e.V.), survey study conducted by the German Accident Research Organization of Insurers, https://www.udv.de/udv/themen/verkehrsklima-in-deutschland-2023-155368

² German Society of Traffic Psychology, position paper No. 09, October 2020

³ Traffic: Why We Drive the Way We Do (and What It Says About Us), Tom Vanderbilt

 

Status: 14.6.2024
© Volkswagen AG

Audi S6 Sportback e-tron, electricity consumption in kWh/100 km: combined 16.7–15.7; CO₂ emissions in g/km: combined 0; CO₂ class: A. Information on electricity consumption, CO₂ emissions and CO₂ classes given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status: 09.2024)
Audi A6 Avant e-tron performance, electricity consumption in kWh/100 km: combined: 17.0–14.8; CO₂ emissions in g/km: combined 0; CO₂ class: A. Information on electricity consumption, CO₂ emissions and CO₂ classes given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status: 09.2024)
Audi A6 Sportback e-tron performance, electricity consumption in kWh/100 km: combined 15.9–14.0; CO₂ emissions in g/km: combined 0; CO₂ class: A. Information on electricity consumption, CO₂ emissions and CO₂ classes given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status: 09.2024)
CUPRA Formentor VZ 2.0 4Drive 245 kW (333 PS), fuel consumption (combined): 8.7-8.9 l/100 km; CO₂ emissions (combined): 192-201 g/km; CO₂ class (combined): G. Information on consumption, CO₂ emissions and CO₂ classes given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status: 09.2024)
CUPRA Leon VZ 1.5 e-HYBRID 200 kW (272 PS), fuel consumption (weighted, combined) 0,4 l/100 km; power consumption (weighted, combined) 16.5-16.8 kWh/100 km; fuel consumption (battery discharged) 5.4-5.5 l/100 km; CO₂ class (weighted, combined) 9-10 g/km; CO₂ class (weighted, combined): B; CO₂ class (battery discharged): D. Information on consumption, CO₂ emissions and CO₂ classes given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status: 09.2024)
CUPRA Leon Sportstourer VZ 1.5 e-HYBRID 200 kW (272 PS), fuel consumption (weighted, combined) 0.4-0.5 l/100 km; power consumption (weighted, combined) 16.7-17.1 kWh/100 km; fuel consumption (battery discharged) 5,5-5,6 l/100 km; CO₂ class (weighted, combined) 9-11 g/km; CO₂ class (weighted, combined): B; CO₂ class (battery discharged): D. Information on consumption, CO₂ emissions and CO₂ classes given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status: 09.2024)
CUPRA Tavascan Z 4Drive 250 kW (340 PS) 77 kWh, power consumption (combined): 16.5-18.1 kWh/100 km; CO₂ emissions (combined): 0 g/km; CO₂ class: A. Information on consumption, CO₂ emissions and CO₂ classes given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status: 09.2024)
Golf eHybrid, power consumption weighted, combined: 15.7–14.7 kWh/100 km plus 0.4–0.3 l/100 km; fuel consumption battery discharged, combined: 5.3–5.0 l/100 km; CO₂ fuel consumption battery discharged, combined: 9–6 g/km; CO₂ class weighted, combined: B; CO₂ class battery discharged: D–C. Information on consumption, CO₂ emissions and CO₂ classes given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status: 08.2024)
Q6 e-tron, electricity consumption in kWh/100 km: combined 19.6-16.5; CO₂ emission in g/km: combined 0; CO₂ class: A. Information on electricity consumption, CO₂ emissions and CO₂ classes given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status: 06.2024)
Q7, fuel consumption in l/100 km (combined):11,0–7,8; CO₂ emissions in g/km (combined): 251–204; CO₂ class: G. Information on fuel/power consumption and CO₂ emissions given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status 03.2024)
ID.7 Tourer Pro, power consumption in kWh/100 km: combined 16.8-14.5; CO₂ emission in g/km: combined 0. Only consumption and emission values according to WLTP and not according to NEDC are available for the vehicle. Information on fuel/power consumption and CO₂ emissions given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status: 03.2024)
Superb, the official consumption and emission figures will not be available until the type approval process is concluded. (Status: 12.2023)
Enyaq 85 / Enyaq 85x, Enyaq 85: power consumption in kWh/100 km: combined 15.8-14.9; CO₂ emission in g/km: combined 0. Enyaq 85x: power consumption in kWh/100 km: combined 16.8-16.0; CO₂ emission in g/km: combined 0. Only consumption and emission values according to WLTP and not according to NEDC are available for the vehicles. Information on fuel/power consumption and CO₂ emissions given in ranges depends on the equipment selected for the vehicle. Vehicle image shows special equipment. (Status: 12.2023)
Q4 Sportback e-tron, power consumption in kWh/100 km: combined 18,9–15,6 (WLTP); CO₂ emissions in g/km: combined 0. Only consumption and emission values according to WLTP and not according to NEDC are available for the vehicles. Information on fuel/power consumption and CO₂ emissions given in ranges depends on the equipment selected for the vehicle. Vehicle image shows special equipment. (Status: 11.2023)
Audi S6 Limousine TDI, fuel consumption in l/100 km (combined): 7,3–6,9; CO₂ emissions in g/km (combined): 191–182. Consumption and emission values are only available according to WLTP and not according to NEDC for the vehicle. (Status: 10.2023)
Audi S6 Avant TDI, fuel consumption in l/100 km (combined): 7.5–7.1; CO₂ emissions in g/km (combined): 196–187. Consumption and emission values are only available according to WLTP and not according to NEDC for the vehicle. (Status: 10.2023)
Audi S7 Sportback TDI, fuel consumption in l/100 km (combined): 7.5–7.1; CO₂ emissions in g/km (combined): 195–186. Consumption and emission values are only available according to WLTP and not according to NEDC for the vehicle. (Status: 10.2023)
Porsche Taycan 4, power consumption in kWh/100 km: combined 24.8–19.6; CO₂ emissions in g/km: combined 0. Only consumption and emission values according to WLTP and not according to NEDC are available for the vehicles. Information on fuel/power consumption and CO₂ emissions given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status:07.2023)
Audi e-tron GT quattro, power consumption in kWh/100 km: combined 21.6–19.6; CO₂ emissions in g/km: combined 0. Only consumption and emission values according to WLTP and not according to NEDC are available for the vehicles. Information on fuel/power consumption and CO₂ emissions given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status:07.2023)
Born 170 kW (231 PS) 77 kWh, power consumption in kWh/100 km: combined 17.5-15.7; CO₂ emissions in g/km: kombiniert 0; electric range (combined): 496-552 km (527-551 km for 5 seater) (WLTP). Only consumption and emission values according to WLTP and not according to NEDC are available for the vehicles. Information on fuel/power consumption and CO₂ emissions given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status:07.2023)
Tavascan, vehicle image shows optional equipment. (Status: 04.2023)
Vehicle no longer available for order, no consumption and emission data are available.
Golf Alltrack, fuel consumption in l/100 km: combined 5.9–5.6; CO₂ emissions in g/km: combined 154-146. Only consumption and emission values according to WLTP and not according to NEDC are available for the vehicles. Information on fuel/power consumption and CO₂ emissions given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status: 03.2023)
Audi R8 Spyder, fuel consumption in l/100 km: combined 13.9–13.4; CO₂ emissions in g/km: combined 316-305. Only consumption and emission values according to WLTP and not according to NEDC are available for the vehicles. Information on fuel/power consumption and CO₂ emissions given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status: 03.2023)
Polo GTI, fuel consumption in l/100 km: combined 7.1–6.8; CO₂ emissions in g/km: combined 161-153. Only consumption and emission values according to WLTP and not according to NEDC are available for the vehicles. Information on fuel/power consumption and CO₂ emissions given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status: 03.2023)
Leon CUPRA 300, no longer available for order. (Status: 03.2023)
Audi e-tron, power consumption in kWh/100 km: combined 24.3–22.0; CO₂ emissions in g/km: combined 0: efficiency class: A+++. Vehicle images show special equipment. (Status: 09.2019)
A6 Avant TFSI e quattro, fuel consumption in l/100 km: combined 1.6–1.3; power consumption in kWh/100 km: combined 21.5–19.8; CO₂ emissions in g/km: combined 37-30. Only consumption and emission values according to WLTP and not according to NEDC are available for the vehicles. Information on fuel/power consumption and CO₂ emissions given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status: 03.2023)
SEAT Leon e-Hybrid, currently not available. (Status: 03.2023)
Arteon eHybrid and Arteon Shhoting Brake eHybrid, Arteon eHybrid: fuel consumption in l/100 km: combined 1.4–1.1; power consumption in kWh/100 km: combined 16.0–14.7; CO₂ emissions in g/km: combined 31-25. Arteon Shooting Brake eHybrid: fuel consumption in l/100 km: combined 1.4–1.2; power consumption in kWh/100 km: combined 16.2–15.0; CO₂ emissions in g/km: combined 32-26. Only consumption and emission values according to WLTP and not according to NEDC are available for the vehicles. Information on fuel/power consumption and CO₂ emissions given in ranges depends on the equipment selected for the vehicles. Vehicle images show special equipment. (Status: 03.2023)
T-Roc R, fuel consumption in l/100 km: combined 9.1–8.6; CO₂ emissions in g/km: combined 205-196. Only consumption and emission values according to WLTP and not according to NEDC are available for the vehicles. Information on fuel/power consumption and CO₂ emissions given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status:03.2023)
ID.4, ID.4 Pure Performance: power consumption in kWh/100 km: combined 17.9–16.7; CO₂ emissions in g/km: combined 0. ID.4 Pro Performance: power consumption in kWh/100 km: combined 18.6–16.4; CO₂ emissions in g/km: combined 0. ID.4 Pro 4MOTION: power consumption in kWh/100 km: combined 19.3–17.1; CO₂ emissions in g/km: combined 0.Only consumption and emission values according to WLTP and not according to NEDC are available for the vehicles. Information on fuel/power consumption and CO₂ emissions given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status: 03.2023)
Enyaq iV and Enyaq Coupé iV, Enyaq iV: power consumption in kWh/100 km: combined 17.1–15.8; CO₂ emissions in g/km: combined 0. Enyaq Coupé iV: power consumption in kWh/100 km: combined 16.9–15.4; CO₂ emissions in g/km: combined 0.Only consumption and emission values according to WLTP and not according to NEDC are available for the vehicles. Information on fuel/power consumption and CO₂ emissions given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status: 03.2023)
Motorsports vehicle, not available as a production model, no consumption and emission data are available.
ID.4 GTX, power consumption in kWh/100 km: combined 19.3–17.2 (WLTP); CO₂ emissions in g/km: combined 0. Only consumption and emission values according to WLTP and not according to NEDC are available for the vehicles. Information on fuel/power consumption and CO₂ emissions given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status: 03.2023)
Amarok PanAmericana, fuel consumption in l/100 km: combined 10.5–10.2; CO₂ emissions in g/km: combined 274-267. Only consumption and emission values according to WLTP and not according to NEDC are available for the vehicles. Information on fuel/power consumption and CO₂ emissions given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status:03.2023)
ID.3, power consumption in kWh/100 km: combined 16.5–15.2; CO₂ emissions in g/km: combined 0. Only consumption and emission values according to WLTP and not according to NEDC are available for the vehicles. Information on fuel/power consumption and CO₂ emissions given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status: 07.2023)
Audi Q8 e-tron, combined power consumption in kWh/100 km: 24.4–20.1(WLTP); CO₂ emissions (combined) in g/km: 0. Only consumption and emission values according to WLTP and not according to NEDC are available for the vehicles. Information on fuel/power consumption and CO₂ emissions given in ranges depends on the equipment selected for the vehicle. Vehicle images show special equipment. (Status: 12.2022)
Superb, official consumption and emission figures are not yet available, as the type approval process has not yet been completed.
ID. Buzz and ID. Buzz Cargo, ID. Buzz Pro: power consumption in kWh/100 km: combined 21.8 - 20.6; CO₂ emissions in g/km: combined 0. ID. Buzz Cargo: power consumption in kWh/100 km: combined 22.3-20.3; CO₂ emissions in g/km: combined 0. Only consumption and emission values according to WLTP and not NEDC are available for the vehicles. Fuel consumption and CO₂ emissions data with ranges depending on the vehicle equipment selected. Vehicle illustrations show optional equipment.
ID.5 Pro and ID.5 Pro Performance, Power consumption in kWh/100 km: combined 18.4-16.1; CO2 emissions in g/km: combined 0. Only consumption and emission values according to WLTP and not NEDC are available for the vehicles. Fuel consumption and CO2 emission data with ranges depending on the equipment selected for the vehicles. Vehicle illustration shows optional equipment.
Image shows concept vehicle/study, the vehicle is not available as a production model, no consumption and emission data are available.
ID.5 Pro, power consumption in kWh/100 km: combined 16.2; CO2 emissions in g/km: 0; efficiency class: A+++.Vehicle image shows optional equipment. (Status: 11.2021)
ID.5 GTX, Power consumption in kWh/100 km: combined 17.1; CO₂ emissions in g/km: 0; efficiency class: A+++. Vehicle image shows special equipment. (Status: 05.2022)
Audi e-tron, power consumption in kWh/100 km: 24.3–22.0 combined; CO2-emission combined in g/km: 0; Efficiency class: A+++. Vehicle image shows optional equipment. (Status: 09.2019)
ID.4 Pro Performance, power consumption in kWh/100 km: 16.0–14.8 combined; CO2-emission combined in g/km: 0; Efficiency class: A+++. Vehicle image shows optional equipment. (Status: 02.2021)
Q5 Sportback, fuel consumption in l/100 km: Combined 7.6-4.7; CO2 emissions in g/km: Combined 182-123; efficiency class: C-A+. Vehicle image shows optional equipment. (Status: 02.2021)
Caddy Cargo, Fuel consumption in l/100 km: Combined 5.8-4.4; CO₂ emissions in g/km: Combined 131-117. Vehicle image shows optional equipment. (Status: 02.2021)
OCTAVIA COMBI SCOUT 1,5 TSI DSG e-TEC 110 kW, fuel consumption in l/100 km: Urban 6.1, extra-urban 4.2, combined 4.9; CO2 emissions in g/km: combined 112; efficiency class: A. Vehicle image shows optional equipment. (Status: 02.2021)
SEAT Leon Sportstourer e-HYBRID, power consumption in kWh/100 km: Combined: 15.5–15.0; electricity consumption/petrol in l/100 km: Combined 1.3–1.2; CO2 emissions in g/km: Combined 29–27; efficiency class: A+. Vehicle image shows optional equipment. (Status: 02.2021)
SEAT Leon e-HYBRID, power consumption in kWh/100 km: Combined 15.4–14.9; fuel consumption/petrol in l/100 km: Combined 1.3–1.2; CO2 emissions in g/km: Combined 29–27; efficiency class: A+. Vehicle image shows optional equipment. (Status: 05.2021)
SEAT Tarraco e-HYBRID, power consumption in kWh/100 km: Combined 14.5; fuel consumption/petrol in l/100 km: Combined 1.8; CO2 emissions in g/km: Combined 41; efficiency class: A+. Vehicle image shows optional equipment. (Status: 05.2021)
Audi Q4 e-tron , power consumption in kWh/100 km: Combined 17.3–15.8 (NEDC); Combined 19.0–17.0 (WLTP); CO₂ emissions in g/km: 0; efficiency class A+. Vehicle image shows optional equipment. (Status: 05.2021)
Octavia RS iV, fuel consumption in l/100 km: combined 1.5; power consumption in kWh/100 km: combined 11.2; CO2 emissions in g/km: combined 33; efficiency class: A+. Vehicle image shows optional equipment.
Octavia Combi RS iV, fuel consumption in l/100 km: combined 1.5; power consumption in kWh/100 km: combined 11.4; CO2 emissions in g/km: combined 34; efficiency class: A+. Vehicle image shows optional equipment. (Status: 05.2021)
OCTAVIA COMBI iV, fuel consumption in l/100 km: combined 1.4; power consumption in kWh/100 km: combined 11.6; CO₂ emissions in g/km: combined 31; efficiency class: A+. Vehicle image shows optional equipment. (Status: 05.2021)
CUPRA Born, power consumption in kWh/100 km: combined 16.0–15.0; CO₂ emissions in g/km: 0; efficiency class: A+. Vehicle image shows optional equipment. (Status: 09.2021)
Q4 Sportback e-tron, power consumption (NEDC) in kWh/100 km: combined1) 17.9–15.6; CO₂ emissions in g/km: combined1) 0; efficiency class: A+. Vehicle images show special equipment. (Status: 09.2021)
ŠKODA ENYAQ iV 80x, Power consumption in kWh/100 km: 16.1 combined; CO2-emission combined in g/km: 0; Efficiency class: A+. Vehicle image shows optional equipment. (Status: 09.2021)
ID.4 GTX, Power consumption in kWh/100 km: 18.2-16.3 combined; CO2-emission combined in g/km: 0; Efficiency class: A+++. Vehicle image shows optional equipment. (Status: 10.2021)
ID.5 GTX, power consumption in kWh/100 km: combined 17.1 – 15.6; CO₂ emissions combined in g/km: 0. Efficiency class: A+++; Vehicle image shows optional equipment.
ID.5 Pro and ID.5 Pro Performance, power consumption in kWh/100 km: combined 15,9 – 14,6; CO₂ emissions combined in g/km: 0; Efficiency class: A+; Vehicle image shows optional equipment. (Status: 06.2022)
CUPRA Formentor 2.0 TDI, fuel consumption in l/100 km: combined 5.1-4.3; CO₂ emissions in g/km: combined 135-113; efficiency class: B-A.Vehicle image shows optional equipment. (Status: 05.2022)
Audi S8 TFSI, fuel consumption in l/100 km: combined 10.8-10.7; CO₂ emissions in g/km: combined 246-245; efficiency class: E.¹⁾ Vehicle image shows optional equipment. (Status: 05.2022)
ID.3 1ST, power consumption in kWh/100 km: combined 15,4 – 13,5; CO₂ emissions combined in g/km: 0; Efficiency class: A+; Vehicle image shows optional equipment. (Status: 09.2021)
ŠKODA ENYAQ iV 80 , electricity consumption in kWh/100 km: Combined 13.6; CO2 emissions in g/km: 0; efficiency class: A+++. Vehicle image shows special equipment. (Status: 02.2022)
Golf GTI, (180 kW / 245 PS) (NEDC) fuel consumption in l/100 km: urban 9.0-8.6 / extra-urban 5.6-5.3 / combined 6.9-6.5; CO₂ emissions in g/km (combined): 157-149; efficiency class: D-C. Vehicle image shows special equipment. (Status: 05.2021)